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Abstract

The distribution of collagen fibers across articular cartilage layers is statistical in nature. Based on 

the concepts proposed in previous models, we developed a methodology to include the statistically 

distributed fibers across the cartilage thickness in the commercial FE software COMSOL which 

avoids extensive routine programming. The model includes many properties that are observed in 

real cartilage: finite hyperelastic deformation, depth-dependent collagen fiber concentration, 

depth- and deformation-dependent permeability, and statistically distributed collagen fiber 

orientation distribution across the cartilage thickness. Numerical tests were performed using 

confined and unconfined compressions. The model predictions on the depth-dependent strain 

distributions across the cartilage layer are consistent with the experimental data in the literature.
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1. Introduction

The mechanical behavior of articular cartilage is complex and is characterized by being time 

dependent, anisotropic, structurally heterogeneous, asymmetric in tension–compression, and 

nonlinear in the stress–strain response [1,2]. Many of these aspects are attributed to the 

distributed collagen fibers, which form a three-dimensional network that is adapted to the 

mechanical loading of the joint [3,4]. Based on the cellular density, cellular morphology, and 

collagen fiber arrangement, articular cartilage can be divided into three distinct 

morphological zones. In the superficial zone (10–20 % of the total thickness), collagen 

fibers are oriented parallel to the articular surface; in the middle zone (40–60 % of the total 

thickness), there is no preferred orientation for the collagen fibers; and in the deep zone 

(30 % of the total thickness), the collagen fibers are approximately perpendicular to the 
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articular surface. The volumetric concentration of collagen fibers varies from 16–31 % in the 

superficial zone to 14–42 % in the deep zone [5,6]. Collagen fibers are substantially stiffer 

than the surrounding cartilage matrix, and they have a Young's modulus of 2–40 MPa [7]. 

The complexity of the mechanical behavior of cartilage is largely due to the effects of the 

distributed collagen fibers, thus many studies have focused on the development of 

microscale-based cartilage models including collagen fibers.

One representative group of these microscale cartilage models is fibril-reinforced models. In 

these models, the solid phase is considered to be an isotropic matrix reinforced by fibrils. 

The total stress in the solid is the sum of the matrix and fibril stresses. There are two kinds 

of fibril-reinforced models: discrete spring-based models [8,9] and continuum models 

[10,11]. In the spring-based models, fibrils are considered as nonlinearly elastic and they can 

carry tensile load only. The limitation of spring-based models is that the direction of the 

fibril alignment has to be consistent with that of the elements, thus restricting their use for 

general practical problems. In continuum fibril-reinforced models, the fibril orientation is 

independent of the mesh, thus these models can be applied to represent geometrically 

realistic collagen networks. In both spring-based and continuum fibril-reinforced models, the 

fibrils can be nonlinear and viscoelastic.

Another representative group of microscale cartilage models is based on homogenization 

methods. In these models, the heterogeneous material properties of the articular cartilage are 

considered to be the statistically averaged effects of the local tissue variations. 

Homogenization theories have been developed originally for composite materials [12–14] 

and were proposed for cartilage [15,16] and later generalized [17–20]. Taylor et al. [21] 

developed a linear viscoelastic homogenization approach to describe the time-dependent 

mechanical behaviors, and they applied their model to a practical problem [22]. Constitutive 

models of soft tissues including distributed fibers for finite deformation have been 

formulated for several tissues [14,17,23–26]. Federico et al. formulated cartilage models 

[17–20] that include collagen fibers in arbitrary directions and statistically distributed across 

the cartilage layer. Recently, Seifzadeh et al. [27] proposed a nonlinear biphasic viscoelastic 

FE model that considers two families of distributed collagen fibers.

The distribution of collagen fibers across the cartilage layer is statistical in nature. 

Therefore, distributed fiber models [18,19] would appear to be a reasonable approach for 

solving practical problems. After the proof-of-concept numerical implementation of these 

statistically distributed fiber models by Federico and Gasser [19], simulations of articular 

cartilage behavior including realistic depth-dependent fiber distribution [28] have been 

performed in the commercially available package ABAQUS [29] and in the open-source 

package FEBio [30]. In the latter case, the effect of the presence of the statistically oriented 

fibers on the tissue's permeability [20,31,32] has been included as well. Another model 

including the effect of fiber distribution on both elasticity and permeability, with variation of 

the collagen orientation across cartilage depth, has been developed by Pierce et al. [33] and 

implemented in FEAP. However, all of these implementations require extensive 

programming of user subroutines and thus require engineers to have programming skills. In 

addition, a consistent approach to discretize the continually distributed fibers for practical 

problems has not been established.

Wu et al. Page 2

Z Angew Math Phys. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The goal of this study was to develop a methodology for engineers to solve practical 

problems without the need for extensive routine programming, and with the sole use of the 

native features of a commercially available FE package. Specifically, we developed a 

methodology to include the statistically distributed fibers across the cartilage thickness in the 

commercially available FE software COMSOL based on the concepts proposed by Federico 

and Herzog [18] and Federico and Gasser [19]. Furthermore, we included the interstitial 

fluid and considered the effects of the deformation- and depth-dependent hydraulic 

permeability in the modeling, without, however, including the effect of the fibers on the 

permeability. In addition, we developed a practical and consistent approach to model the 

randomly distributed fibers for realistic cartilage samples using a discrete sets of statically 

distributed fibers. We applied the proposed methodology to analyze cartilage samples with 

distributed fiber orientations, as observed in clinical studies, and performed numerical tests 

using confined and unconfined compression tests.

2. Methods

2.1. Biphasic model for finite deformation

In a solid–fluid biphasic system, the solid phase (subscript s) and the fluid phase (subscript 

f) are assumed to coexist at every point. The motion of the solid phase is described by the 

configuration map χ, mapping points X = (X1, X2, X3) in the reference configuration 

into points x = (x1, x2, x3) in the physical space . The deformation gradient F is defined as 

the tensor with components FiJ = χi,J ≡ ∂χi/∂XJ. The determinant J = det F is the volume 

ratio, and C = FT.F is the right Cauchy-Green deformation tensor.

In the current configuration, the volumetric fractions of solid and fluid are denoted ϕs and 

ϕf, respectively, and are constrained to the saturation condition

(1)

everywhere in the tissue. The solid volumetric fraction in the reference configuration (which 

is constant, in the absence of sources/sinks and fluxes of mass) is obtained by means of the 

Piola transformation

(2)

from which, considering the referential saturation condition ϕsR+ϕfR = 1, the referential 

fluid volumetric fraction ϕfR is obtained as

(3)

Equations (2) and (3) state that the current fractions ϕs and ϕf depend on the volume ratio J. 

It is important to recall that, although the solid and the fluid phases are both intrinsically 

incompressible, the biphasic mixture is overall compressible. This is true both locally, as 
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fluid can escape from or enter into a certain point X, and globally, as fluid and escape or 

enter through the boundaries of the system [20].

The equation of conservation of mass for a biphasic mixture, comprised of an 

incompressible fluid and an incompressible solid, reads [34]

(4)

where vs and vf are the velocities of solid and fluid, respectively. The total Cauchy stress (σt) 

in the biphasic mixture is the sum of the stresses in the solid phase (σs) and in the interstitial 

fluid (σf),

(5)

where

(6)

where i is the unit tensor, p is the fluid pressure, and σe is the elastic stress in the solid phase. 

The fluid pressure, p, is governed by Darcy's law,

(7)

where w is the effective fluid flux and k is the isotropic hydraulic permeability, which may 

be location and deformation-dependent.

Assuming hyperelastic behavior, for a finite deformation problem, the elastic Cauchy stress 

is defined by

(8)

where Se is the elastic second Piola-Kirchhoff stress and W is the elastic potential (or elastic 

strain energy).

2.2. Nonlinear elasticity of a medium including statistically distributed fibers

The effect of distributed fibers on the mechanical properties of cartilage is included in the 

elastic potential, W. The solid phase of cartilage is considered to be a composite comprised 

of a nearly incompressible, homogeneous matrix (subscript 0), and nearly incompressible, 

distributed fibers (subscript 1). The matrix and fiber fractions with respect to the solid are 

defined, in the current and reference configurations, as
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(9)

where ϕ0 and ϕ1 are the current fractions with respect to the whole mixture, and ϕ0R and 

ϕ1R are the referential fractions with respect to the whole mixture. The matrix and fiber 

fractions relative to the solid are such that

(10)

The fiber orientation is assumed to be statistical at every point, and varying across cartilage 

depth, and the volumetric concentration of the fibers is assumed to be depth-dependent. The 

formulations of statistical fiber distribution by Federico et al. [18–20] were adopted in the 

current study. In the reference configuration, the probability to find a fiber oriented in 

direction  (where  is the referential unit sphere) is given by ψ(M). The 

probability ψ is normalized over the unit sphere, i.e.,

(11)

The matrix is assumed to be isotropic with elastic potential W0, and the fibers are assumed 

to be anisotropic, with elastic potential W1 given by

(12)

where W1i is an isotropic contribution, W1a is an anisotropic contribution, function of the 

structure tensor , function  is the Heaviside step, with argument I4(C, A) – 1. 

The invariant

(13)

is usually called the fourth invariant of C and equals the square of the stretch in the fiber 

direction. Therefore, when I4(C, A) – 1 > 0, the fiber is in extension and the anisotropic term 

W1a(C, A) is active since . In contrast, when I4(C, A) – 1 < 0, the fiber 

is in contraction and the anisotropic term W1a(C, A) is “killed” since .

The overall elastic potential articular cartilage, seen as a composite with a continuous 

infinity of fiber families, is obtained via rule of mixture, i.e.,

Wu et al. Page 5

Z Angew Math Phys. Author manuscript; available in PMC 2016 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(14)

which, considering that W1i(C) does not depend on direction and that the probability ψ is 

normalized to 1 (Eq. (11)), reduces to

(15)

We remark again that, although the matrix and fibers are incompressible, the presence of the 

pores makes the mixture overall compressible. Therefore, the potential must be assumed 

compressible [20]. Note also that, in [20], the potential was defined using the referential 

fractions ϕ0R and ϕ1R with respect to the whole mixture. Using the fractions referential 

fractions  and  with respect to the solid, as we do here, is equivalent, and practically 

amounts to rescaling the potentials W0 and W1 of a factor ϕsR.

For practical problems, it is convenient to consider a set of N fiber directions Mα (each with 

structure tensor ), such that the probability takes the N discrete values ψα = 

ψ(Mα), which must obey, at each point X in the reference configuration, the normalization 

condition

(16)

which is the discretized version of Eq. (11). The overall elastic potential (15) takes the 

discretized form

(17)

2.3. Finite Element implementation

For the Finite Element implementation, we consider a compressible Mooney-Rivlin model 

for the isotropic matrix term W0 (the Mooney-Rivlin coefficients, usually indicated by C10 

and C01, are here denoted A0 and B0, in order to avoid confusion with the superscripts 0 and 
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1 used for matrix and fibers), a compressible neo-Hookean model for the isotropic fiber term 

W1i, and an anisotropic neo-Hookean-like term for the anisotropic fiber term, i.e.,

(18)

where A0, B0, and κ are the material parameters for the matrix, C1i, λ, and C1a are the 

material parameters for collagen fibers, and the invariants other than the already defined I4 

(Eq. (13)) are

(19)

Note that COMSOL uses the distortional invariants Ī1 and Ī2 for the definition of the 

Mooney-Rivlin model, resulting in a decoupled elastic potential, i.e., the sum of a function 

of the distortional deformation C̄ and a function of the volume ratio J. A decoupled potential 

would be suitable only for a quasi-incompressible material [35]. However, in this case, the 

coupling is provided by the isotropic and anisotropic fiber potentials W1i and W1a, which are 

functions of the whole right Cauchy-Green deformation tensor C. Therefore, the overall 

potential is suitable for a material like cartilage, which has an apparent compressibility due 

to the fact that the fluid can escape from the boundaries of the system [20].

If the probability distribution of orientation ψ is transversely isotropic, the fiber direction 

vector is conveniently expressed in polar coordinates, as

(20)

where θ and φ represent the colatitude and the longitude angle, respectively. The colatitude 

angle varies in the range from 0° to 90°, which represents the fiber direction in the 

transverse and normal planes relative to the cartilage surface, respectively. The fibers are 

considered to be randomly distributed in the range from 0° to 360° along the longitudinal 

direction, φ.

If direction three is selected to be the cartilage depth, cartilage is assumed to be transversely 

isotropic in this direction, and the deformation is axisymmetric in the same direction. Then, 

the right Cauchy-Green deformation tensor takes the matrix representation
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(21)

and the invariants are expressed explicitly as

(22)

where MI(θ, φ) (I = 1, 2, 3) have been defined in Eq. (20).

2.4. Case study

A representative cartilage sample, as illustrated in Fig. 1a, is considered to test our approach. 

The location of the fiber is defined by the normalized depth, ξ = Z/h with Z and h being the 

coordinate in direction 3 (direction of the depth of the tissue) in the reference configuration 

and the referential cartilage thickness, respectively. The fiber orientation is defined by the 

colatitude angle, θ. Typically, the fiber orientation is close to 90° and 0° near the articular 

surface (ξ → 1) and the bone–cartilage interface (ξ → 0), respectively.

The fiber orientation distributions across the cartilage thickness have been determined 

experimentally in a previous study [28], and typical results for cartilage layers at the knee 

and ankle are shown in Fig. 2a. For numerical testing, we selected five representative fiber 

sets (N = 5) from five different cartilage depths (ξα equal to 0.0, 0.3, 0.6, 0.75, 1.0, θα equal 

to 0°, 2°, 6°, 40°, 80°, with α ∈ {1, 2,. . . ,5}. For a transversely isotropic problem, the fibers 

are assumed to be equally distributed on the transverse plane, i.e., for a fixed colatitude θ, all 

longitudes φ have the same probability. Each of the fiber sets (α ∈ {1, . . . ,5}) is evenly 

distributed in the range from 0° to 360° in the longitudinal direction (φ); and they are 

represented by five evenly distributed orientations, i.e., φβ = (β · 72)°, with β ∈ {1, . . . , 5}, 

i.e., at 0°, 72°, 144°, 216°, 288°.

We further assume that the distribution density of the α-th fiber set follows a normal 

distribution:

(23)

where b is a parameter determining the distribution concentration. Assuming that the fiber 

concentration parameter is b = 10 for all five fiber sets, the fiber density distribution, fα(ξ), is 

defined and plotted in Fig. 3a. The α-th fiber set (α ∈ {1, . . . ,5}) has the maximal density at 

ξα and that density decreases rapidly with increasing distance from ξα. The distribution 

density function is constructed by normalizing the normal distribution density (23):
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(24)

It is clear that the distribution density function (24) satisfies  everywhere. 

The distribution density function set used in our simulations is shown in Fig. 3b. Since the 

distribution of each fiber set in the longitudinal direction is discretized in five evenly 

distributed orientations (β ∈ {1, 2, . . . ,5}), there is a total of 25 fiber families and the 

normal distribution function for each of families is , consequently, 

 is satisfied everywhere.

The elastic potential associated with the effect of the fibers [Eq. (17)] is expressed explicitly 

as

(25)

where I4(θα, φβ) is a short notation for I4(C, Aα), at each value of C.

The referential fiber volumetric concentration is considered to be depth-dependent, i.e., 

expressed as a function , and is shown in Fig. 2b. The volumetric concentration of the 

matrix is . The model parameters (A0 = B0 = C0 = 0.1 MPa, κ = 20 C0, 

C1i = 0.1 MPa, and C1a = 5 MPa) were adopted from previous studies [19]. Assuming ν = 

0.3, the parameter λ is estimated to be λ = 2C1iν/(1 – 2ν) = 0.15 MPa. The matrix and fibers 

were assumed to be stress-free in the reference configuration, at t = 0.

2.5. Numerical tests

Simulations were performed for confined (Fig. 1b) and unconfined compression (Fig. 1c) 

configurations. For the case of confined compression, the tissue specimens were compressed 

in a confining chamber with a rigid, porous platen connected to a load cell. For the case of 

unconfined compression, the tissue specimens were compressed between two rigid, non-

porous platens; the boundary at the bottom was fixed, simulating the cartilage–bone bound, 

and the fluid pressure was assumed to be zero at the lateral surface of the specimen. An 

axisymmetric FE model is used for all four numerical tests. The sample has a referential 

thickness h = 2 mm and diameter of 4 mm. A displacement of 0.1 mm was applied on the 

surface via an exponential ramp function
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(26)

where δ0 = 0.1 mm and τ0 = 250 s are constants.

Four numerical tests (A, B, C, and D) were performed in the current study. Tests A and B 

were designed to reproduce the results by [37] and to validate the biphasic modeling in the 

current study. The cartilage samples for tests A and B were isotropic and did not include 

distributed fibers; the tests were performed in confined compression. For test A, the solid 

phase was assumed to be linearly elastic and homogenous (Poisson's ratio 0.10; Young's 

modulus 0.55 MPa; hydraulic permeability 0.250×10−3 mm4 N−1 s−1). For test B, cartilage 

was isotropic and inhomogeneous, with depth-dependent hydraulic permeability [38] and 

Young's modulus [39] as shown in Fig. 4a, b, respectively.

Tests C and D are the primary focus of the current study. The cartilage samples for tests C 

and D included distributed fibers, and the tests were performed in unconfined compression. 

Cartilage was assumed to embed distributed fibers, with a fiber across the tissue depth as 

described in the previous section. Fibers and matrix were assumed to be hyperelastic, and 

the material properties from [19] were used. The hydraulic permeability was assumed to be 

depth- and deformation-dependent and was used as defined by [40],

(27)

where k0(ξ) is the depth-dependent permeability for the undeformed state, as plotted in Fig. 

4a. M0 (=1.3) is a non-dimensional material parameter. Test D was designed to fit 

experimental data. The model structure, material parameters, and loading conditions in Test 

D were the same as those in Test C, except that the stiffness of the matrix was depth-

dependent and was adjusted to fit to the experimental data. In Test D, the stiffness 

parameters of the matrix, A0, B0, and κ, were considered to be A0 = B0 = C0inh and κ = 20 

C0inh, where the inhomogeneous stiffness C0inh is a function of tissue depth (Fig. 4c), given 

by

(28)

where aC0 and bC0 are positive, dimensionless parameters that determine the magnitude and 

tendency, respectively, of the variations of C0inh(ξ). It is easy to see that C0inh(ξ) increases 

from C0inh(1) = C0 at the articular surface (ξ = Z/h = 1) to C0inh(0) = (1 + aC0)C0 at the 

cartilage/bone interface (ξ = Z/h = 0). The matrix stiffness variation function (28) (aC0 = 

1.75 and bC0 = 5.0) is constructed based on the experimental data [39,41–43] and is plotted 

in Fig. 4c.
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The FE formulations have been implemented into the commercial FE software COMSOL 

(version 3.5a). We applied Standard and Structural Modules in the FE software package. 

Darcy's equation (7) was solved by an analog to the diffusion process. The biphasic 

modeling was simulated by coupling diffusion with dynamic solid mechanics. The 

descriptions of the test models and all material parameters used in the FE modeling are listed 

in Table 1.

3. Results

The simulated displacement as a function of depth and time is shown in Fig. 5a left and 

right, for Tests A and B, and in Fig. 6a left and right, for Tests C and D, respectively. The 

results of the benchmark Tests A (with homogeneous, isotropic elastic properties) and B 

(with inhomogeneous, isotropic elastic properties) were compared with those obtained using 

the analytical modeling [37] and they agree well (results not shown). Comparison of the 

isotropic Tests A and B with fiber-reinforced, anisotropic Tests B and C shows that the 

distributed fibers have a substantial effect on cartilage deformation. The surface 

displacements for all four tests are the same (they are prescribed), whereas the displacements 

within the cartilage layer are quite different: the cartilage with distributed fibers (Tests C and 

D, Fig. 6a) has more uniformly distributed displacements across the cartilage thickness 

compared to those obtained using the isotropic models (Tests A and B, Fig. 5a). In addition, 

the displacements across the cartilage depth for the distributed fiber model (Fig. 6a) reach 

steady state faster than those of the isotropic cartilage models (Fig. 5a).

The predicted fluid pressures as a function of cartilage depth (ξ = Z/h) at six time points 

(500, 1000, 2000, 5000, 8000, 12000 s) are shown in Fig. 5b left and right, for Tests A and 

B, and in Fig. 6b left and right, for Tests C and D, respectively. The results for all test 

models show that the fluid pressure decreases with time during the entire loading process (as 

expected), but does not reach steady state even at 12000 s. The difference of the predicted 

fluid pressure of test A (Fig. 5b left) from that of test B (Fig. 5b right) reflects the effects of 

the non-uniformity of the cartilage matrix. The fluid pressure tends to vary more 

dramatically across the cartilage thickness for t < 1000 s and the fluid pressure at the 

cartilage–bone interface (Z/h = 0) reduces by approximately 50 % for extended time (t > 

5000 s), when the cartilage elasticity and permeability are changed from constant to being 

depth dependent (Table 1). In contrast, the effects of the change of the properties of the 

matrix from homogeneous to inhomogeneous are less dramatic for the samples with 

distributed fibers (Fig. 6b). The change of the cartilage elasticity from constant to being 

depth dependent caused only slight variations in the fluid pressure distributions across the 

depth for t < 1000 s and little effects on the fluid pressure distribution for extended time (t > 

5000 s).

The predicted vertical nominal strains (εZ) as a function of cartilage depth (ξ = Z/h) at six 

time points (500, 1000, 2000, 5000, 8000, 12000 s) are shown in Fig. 5c left and right, for 

Tests A and B, and in Fig. 6c left and right, for Tests C and D, respectively. For the isotropic 

models (Tests A and B), the vertical nominal strain (εZ) increases with ξ and reaches a 

maximum at the contact surface (ξ = 1.0) (Fig. 5c). The inhomogeneous model (Test B) 

produces the most dramatic variations in the strain distributions across the cartilage layer 
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(Fig. 5c right). In contrast, for the distributed fiber models (Tests C and D), the vertical 

nominal strain (εZ) also increases with ξ and reaches maximum around superficial layer 

(Fig. 6c); however, the magnitude of the maximal strain is substantially smaller and varies 

less dramatically with time. The predicted strain of the distributed fiber models (Tests C and 

D) reached steady state after 1000 s (Fig. 6c), whereas it did not reach steady state even after 

12000 s for the isotropic models (Fig. 5c). The change of the cartilage elasticity of the 

distributed fiber models from homogeneous (Test C) to being depth dependent (Test D) 

causes an increase in the strain magnitude in the proximity of the articular surface (Fig. 6c 

left vs. right).

The predicted Tresca stress as a function of cartilage depth (ξ = Z/h) at six time points (500, 

1000, 2000, 5000, 8000, 12000 s) are shown in Fig. 5d left and right, for Tests A and B, and 

in Fig. 6d left and right, for Tests C and D, respectively. The general trends of the stress 

distributions across the cartilage thickness are consistent with those of the strains, in that the 

stress of the distributed fiber models (Tests C and D) reached steady states after 1000 s (Fig. 

6d), whereas it did not reach steady state even after 12000s for the isotropic models (Fig. 

5d). The maximal stress occurs at the superficial zone at all times, for all four tests. The 

change of the cartilage elasticity of the distributed fiber models from homogeneous (Test C) 

to being depth dependent (Test D) causes a decrease in the stress magnitude near the 

superficial layer (Fig. 6d left vs. right).

4. Discussion and conclusion

Variability in mechanical properties within a biological specimen is often high. Collagen 

fibril orientation and density in a single study may vary by 10–40 %. Therefore, models 

including probability distributions of the collagen fibers, such as those proposed by [18–20], 

are promising for tackling practical problems. These models have been implemented 

numerically [19,29,30], based on extensive programming of user subroutines. In the current 

study, we developed a discretization methodology to implement the probability distribution 

models [18,19] into a commercially available FE software package (COMSOL), without 

using any routine programming, and with the sole use of native functions of the FE package. 

The implementation includes the representation of the elastic properties as well as the 

presence of the fluid phase, and has been applied to a practical problem.

The fibers in articular cartilage have a complex arrangement that can be captured well by the 

use of a probability distribution parameterized by the depth coordinate. For example, 

Federico and Herzog [18] analytically predicted the anisotropy of the permeability and 

reproduced experimental results on the depth dependence of cartilage permeability by using 

a probability distribution obtained from the experimental data [28], which we report in Fig. 

2. According to the experimental data [28], in the deep zone (ξ = 0), about 70 % of all fibers 

have an orientation of 0°, 28 % have 2°, 2 % have 6°, and the fraction of fibers with an 

orientation greater than 6° is negligible. In the superficial zone (ξ = 1.0), about 55 % of the 

fibers have an orientation of 80°, 34 % have 40°, 11 % have 6°, and a negligible proportion 

of fibers has an orientation of less than 6°. However, the fiber orientation is typically 

assumed to be 100 % at a 0° and 90° orientation for the deep and superficial zones of the 

cartilage [11], respectively.
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The collagen fibers cause the anisotropy and inhomogeneity of the properties of cartilage 

and one way to indirectly take this into account is to assume inhomogeneous elastic 

properties and permeability across the tissue depth. However, this can only be used for uni-

dimensional problems such as confined compression [37], where anisotropy does not come 

into play, and an inhomogeneous but otherwise isotropic model suffices, at least for certain 

aspects. Indeed, our results confirm that the effects of distributed fiber orientation cannot be 

simulated by simply using depth-dependent permeability and elastic modulus in otherwise 

isotropic models. This lack of agreement may be due to the neglected effects of interactions 

between fibers and matrix, variations in the fiber orientations in the deformed state, and 

compression–tension asymmetry induced by the fibers.

The predicted tissue strain distribution across the cartilage layer (Fig. 6c right) agrees well 

with the experimental data by [39], which show that the strain increases about six times from 

the deep to the superficial zone. The current prediction is also consistent in trend with the 

experimental data by [41–43], which indicate that the strain increases slowly from the deep 

zone within approximately 70 % of the cartilage thickness, increases more dramatically in 

the middle-superficial zone within the remaining 30 % of the cartilage thickness, and 

reaches its maximum at the contact surface. The measured tissue strain data show especially 

large variations near the contact surface. These substantial strain variations were attributed to 

the differences in anatomic structure among specimens, as evidenced in the historical 

analysis [43].

It is interesting to observe that, for Test C, the strain varies little in approximately 40 % of 

the cartilage thickness, corresponding roughly to the superficial zone (Fig. 6c left), whereas 

the corresponding Tresca stress increases by approximately 45 % (Fig. 6d left). For Test D 

and within the same cartilage zone, the strain increases by approximately 50 % (Fig. 6c 

right), whereas the corresponding Tresca stress varies little (Fig. 6d right). This is likely 

because the cartilage in superficial zone is stressed in the stiffening region for Test C, 

whereas it is stressed in the plateau region for Test D. A stress-strain curve of fiber-rich 

tissues (e.g., composite scaffolds) typically shows three regions in compressions [44]: an 

initial region, where the stress increases nearly linearly with increasing strain, a plateau 

region, where the stress increases little with increasing strain, and a stiffening region, where 

the stress increases dramatically with increasing strain. Our results seem to indicate that 

passing from matrix with elastic properties uniform through the tissue depth (Test C) to 

matrix with depth-dependent elastic properties (Test D) causes, in an interval of depths, the 

overall stress–strain relation (as reported in [44]) to change in such a way that the strain 

stiffening region is shifted to higher strain levels.

It is known that compressive load on cartilage is shared by the fluid and solid phase. From 

our parametric study (Figs. 5 and 6), it is seen that the fluid pressures calculated using the 

distributed fiber models are smaller than that using isotropic models, meaning that the solid 

matrix will carry more load. This explains why the cartilage stress calculated using the 

distributed fiber model are more than those obtained with the isotropic models.

The depth-dependent elastic modulus used in the numerical test B (Fig. 4b) was taken from 

published experimental data [45]. The data show that the elastic modulus at the superficial 
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zone is only about 4 % of that observed in the deep zone, which makes sense 

physiologically. Indeed, in the literature, the elastic modulus of the matrix of articular 

cartilage is usually obtained through compressive tests, by applying loading normal to the 

contact surface. The proteoglycans have a higher volumetric fraction in the deep zone 

compared to the superficial zone, and consequently the compressive stiffness of the tissue is 

higher in the deep zone than that in the superficial zone. One would therefore expect that the 

trend of the depth-dependent elastic modulus in the direction parallel to the surface should 

be the opposite: the elastic modulus in the superficial zone should be much greater than that 

expected in the deep zone, because the collagen fibers are oriented in the transverse plane. 

Articular cartilage maintains mechanical stability under physiological conditions because it 

carries mainly tensile stress in the direction parallel to the surface in the superficial zone. 

These phenomena have been included in the fiber distribution model (Tests C and D), 

whereas they were not considered in the isotropic model (Test B). This is one of the reasons 

why the isotropic models cannot correctly describe the mechanical behavior of articular 

cartilage under physiological conditions.

In the current study, we demonstrated how one can represent an experimentally observed 

fiber distribution using discrete fiber families. More precise results may be obtained by 

using a greater number of fiber sets. However, we have not yet performed numerical tests to 

verify this speculation.

The distributed fibers affect not only the mechanical characteristics, but also the 

permeability of the cartilage; consequently, the cartilage permeability is anisotropic. The 

deformation-dependent anisotropy of cartilage permeability has been studied in previous 

works [30–33,46,47], but has not been included in this work, which focuses on the elasticity 

of the tissue. Therefore, in the current study, the cartilage permeability is considered as 

being deformation dependent, but isotropic.

The depth-dependent mechanical characteristics of the cartilage are also associated with the 

fixed charge density of the proteoglycans, which are distributed unevenly across the depth 

[11]. The current model is focused on the effects of the distributed collagen fibers and does 

not include the fixed charge density; therefore, the swelling characteristics cannot be 

simulated using the current model. Another limitation of the proposed approach is that the 

distribution density function (23) was not based directly on experimental observation. 

Consequently, solutions may be different if different density distribution functions (23) are 

applied. More experimental data are needed to determine the distribution density function 

(23); otherwise, one could assume a range of b-values in Eq. (23) to predict the solution 

range for practical problems. It is in our future plans to explore the development of models 

of articular cartilage, and of fiber-reinforced soft tissues in general, considered within the 

broader context of mixture theory (e.g., [48,49]), micromorphic materials (e.g., [50,51]), for 

which finite element implementations are available (e.g., [52–54]), and higher-gradient 

materials (e.g., [55–57]). Moreover, it would be interesting to adapt the practical solution 

method presented in this work to the cases of remodeling and growth [58,59]. This should be 

done to investigate the influence of these phenomena on the material response of biological 

tissues (cf., e.g., [60], where the response was studied in the isotropic case, with the aid of 

the computational algorithm outlined in [61]).
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Fig. 1. 
Cartilage model. a Definition of the cartilage depth and fiber orientation. b Confined 

compression test. c Unconfined compression test. The cartilage depth is defined by the 

normalized depth, ξ = Z/h with Z and h being the vertical coordinate and cartilage thickness, 

respectively. The fiber orientation is defined by the colatitude angle, θ
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Fig. 2. 
The fiber orientation and volumetric concentration as a function of cartilage depth. a The 

fiber orientation for representative human ankle and knee cartilage layers [28]. From the 

deep zone (ξ =0) to the superficial zone (ξ = 1.0), the fiber orientation varies from nearly 

vertical to the contact surface (approximately 0°) to nearly parallel to the contact surface 

(approximately 80°). A set of five fiber orientations (symbols) are selected to represent the 

test data. b Fiber volumetric fraction with respect to the solid, , as a function of 

cartilage depth (constructed based on experimental data [5,36])
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Fig. 3. 
The distribution density functions of the five selected fibers (0°, 2°, 6°, 40°, and 80°). a 
Distribution density functions. b Normalized distribution density functions
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Fig. 4. 
Depth-dependent hydraulic permeability (a), elastic modulus (b), and normalized cartilage 

matrix stiffness (C0inh/C0) (c) used in the numerical simulations. The data are based on 

published experimental studies on inhomogeneous permeability [38] and stiffness [39]. Note 

that, for Tests C and D, which assume a deformation-dependent permeability, the graph is 

intended to refer to the undeformed permeability k0
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Fig. 5. 
The predicted vertical displacements, fluid pressure, vertical nominal strain, and Tresca 

stress as a function of cartilage depth and time for Tests A and B (isotropic models). All 

parameters were taken at R = 0, where R is the referential radial coordinate. a vertical 

displacement. b Fluid pressure. c Vertical nominal strain. d Tresca stress. Left column Test 

A. Right column Test B. The time histories of the vertical displacement at ten different 

depths (ξ = Z/h equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) are plotted. ξ is the 

normalized depth with ξ = 0 and 1.0 referring to the bone–cartilage interface and contact 

surface, respectively. The fluid pressure, vertical nominal strain, and Tresca stress for six 
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time points (t equal to 500, 1000, 2000, 5000, 8000, and 12000 s) across the cartilage layer 

are plotted
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Fig. 6. 
The predicted vertical displacements, fluid pressure, vertical nominal strain, and Tresca 

stress as a function of cartilage depth and time for Tests C and D (distributed fiber models). 

All parameters were taken at R = 0, where R is the referential radial coordinate. a Vertical 

displacement. b Fluid pressure. c Vertical nominal strain. d Tresca stress. Left column Test 

C. Right column Test D. The time histories of the vertical displacement at ten different 

depths (ξ = Z/h equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) are plotted. ξ is the 

normalized depth with ξ = 0 and 1.0 referring to the bone–cartilage interface and contact 

surface, respectively. The fluid pressure, vertical nominal strain, and Tresca stress for six 
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time points (t equal to 500, 1000, 2000, 5000, 8000, and 12000 s) across the cartilage layer 

are plotted
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TABLE 1

The material parameters of the soft tissue matrix and collagen fibers used in the FE modeling

Test A Permeability k 2.50 10–3 mm4 N–1 

s–1

Linearly elastic, isotropic, homogeneous Young's modulus E 0.55 MPa

Poisson's ratio ν 0.1 –

Test B Permeability k(ξ) Fig. 4a 10–3 mm4 N–1 

s–1

Linearly elastic, isotropic, inhomogeneous Young's modulus E(ξ) Fig. 4b MPa

Poisson's ratio ν 0.1 –

Test C Undeformed permeability k0(ξ) Fig.4a 10–3 mm4 N–1 

s–1

Hyperelastic, finite deformation, with collagen fibers, 
homogeneous matrix

Permeability parameter M 0 1.3 –

Matrix material parameter A 0 C 0 MPa

Matrix material parameter B 0 C 0 MPa

Matrix material parameter κ 20 C0 MPa

Matrix material parameter C 0 0.1 MPa

Fiber material parameter C 1i 0.1 MPa

Fiber material parameter λ 0.15 MPa

Fiber material parameter C 1a 5.0 MPa

Matrix-to-solid fraction ϕ0R 1 − ϕ1R
–

Fiber-to-solid fraction ϕ1R
Fig. 2b –

Test D Undeformed permeability k0(ξ) Fig.4a 10–3 mm4 N–1 

s–1

Hyperelastic, finite deformation, with collagen fibers, 
inhomogeneous matrix

Permeability parameter M 0 1.3 –

Matrix material parameter A 0 C0inh(ξ) MPa

Matrix material parameter B 0 C0inh(ξ) MPa

Matrix material parameter κ 20 C0inh(ξ) MPa

Matrix material parameter C0inh(ξ) Fig.4c MPa

Matrix material parameter a C0 1.75 –

Matrix material parameter b C0 5.0 –

Fiber material parameter C 1i 0.1 MPa

Fiber material parameter λ 0.15 MPa

Fiber material parameter C 1a 5.0 MPa

Ref. matrix-to-solid fraction ϕ0R 1 − ϕ1R
–

Ref. fiber-to-solid fraction ϕ1R
Fig. 2b –

All Tests Referential solid fraction ϕ s R 0.2 –

Referential fluid fraction ϕ f R 0.8 –
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